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Review Article 
Dynamics of Colloidal Dispersions 

ROBIN C .  BALL 
Cavendish Laboratory, University of Cambridge, England 

and 

PETER RICHMOND 

Unilever Research, Port Sunlight Wirral. Merseyside. England 

(Received October 22, lY7Y)  

We review the essential physics underlying the dynamics of colloidal dispersions. The develop- 
ment of the theoretical techniques is discussed in the context of calculations done for both 
diffusion coefficients and viscosities. 

1 INTRODUCTION 

The dynamic and rheological properties of colloidal dispersions are of 
considerable importance and a comprehensive review of many aspects of 
these systems was given by Goodwin in 1975.' These properties control 
many aspects of processing of importance to the chemical engineer such as 
materials handling, pumping and transfer in pipes, mixing and stirring. 
They also determine important properties relating to behaviour in use 
such as is found in paints, many food dressings such as sauces, detergent 
products, etc. Often the dispersion is concentrated and imposed flows can 
be complex. For example the shear rate may be high to produce turbulent 
flow thereby aiding heat transfer into our out of the system.' The dispersion 
particles may have a complex shape and interact directly via van der Waals, 
electrical double layer and solvation forces3 as well as indirectly via hydro- 
dynamic effects? Given this complexity, it is not surprising that the literature 
abounds with empirical and semi-empirical expressions that describe the 
properties of such systems in various regimes. However, despite this, a 
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I00 R .  C .  BALL A N D  P. RlCHMOND 

number of authors have attempted to analyse the dynamics of dispersions 
from a fundamental point of view. 

The basic model is one which considers spherical, rigid, neutrally buoyant 
particles of mass m immersed in a solvent. If the concentration of particles 
is sufficiently dilute that all interactions can be neglected then the well- 
known Fokker-Planck equation for the single particle distribution function 
f l ( r l p ; t )  is valid: 

- 8% + --V’1 p = k T [ -  a ( a  - + - )fl 
at m dp mkT 

where < is the friction constant. Assuming that the momenta of the Brownian 
particles relax to equilibrium values instantaneously through interaction 
with the surrounding solvent, the equation for the one particle spatial 
distribution function nl(r ,  f )  can be obtained : 

a n ,  kT - = - V n ,  
a t  r 

Thus we identify the one particle diffusion coefficient D = kT/<.  
When considering a system of N Brownian particles which interact 

directly, or indirectly via the solvent, it is necessary to deal with the dif- 
fusidn tensors DDlp and friction tensors Cg which relate the flow of solvent 
at the location 3 one particle and the hydrodynamic force at the location 
of another. In addition the interparticle forces of molecular origin must also 
be considered. The appropriate many particle Fokker Planck and Smolu- 
chowski equations have been derived by a number of  authors.'^^ In the 
next section we give a relatively simple derivation of the Smoluchowski 
equation which forms the formal basis for much of colloidal dynamics. 
Section 3 discusses the problem of evaluating the diffusion tensors and fluid 
flows in dispersions using classical hydrodynamics within the framework of 
a diagrammatic perturbation theory which is used in later sections. Cal- 
culations of the one particle diffusion coefficient are discussed in Section 4. 
The nature of the bulk stress and viscosities of dispersions for both dilute and 
concentrated systems are discussed in Sections 5 and 6 .  We close with a brief 
discussion. 

2 THE GENERALISED SMOLUCHOWSKI EQUATION 

This equation has been derived for the case of no imposed flow by Deutch 
and Oppenheim’ and Murphy and Asquire.6 Beginning with the Liouville 
equation for the total system (fluid molecules plus N Brownian particles) 
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DYNAMICS OF COLLOIDAL DISPERSIONS 101 

they used a fairly lengthy method using Zwangzig's projection operators 
which derived en route the generalised Fokker-Planck equation and also 
proved the fluctuation dissipation theorem for this particular system. Thus 
they showed that the friction tensor: 

where f, is the force on particle CI and the average is taken over the fluid 
with the particles at fixed positions (r,). 

If we recognise at the outset that the mass of our particles is large and they 
are essentially Brownian particles we can obtain the Smoluchowski equation 
relatively simply. Note first that the particle distribution function P({r,, v,) ; t )  
satisfies the Liouvilie equation: 

ap 

where F, is the total force on particle a (including Brownian forces). In- 
tegrating over particle velocities and noting the third term, which may be 
transformed into a surface integral, vanishes we obtain: 

ap a 
- + C-DaP 
at dra 

where 

and 

To obtain an expression for U, we multiply Eq. (2.3) by u, and again 
integrate over particle velocities: 

The third term may again be integrated by parts and noting the surface 
integral vanishes we obtain: 

We now observe that the total force on our Brownian particles is: 

Fr = -c ( ;o l@' (u f l  - vB) + fn + ff (2-8) 
B 

where f, is the body force from inter-particle and external forces and f t  is 
the force due to Brownian fluctuations. UB is the velocity of the particles 
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I02 R. C. BALL AND P. RICHMOND 

in the absence of inter-particle forces, external forces and diffusion. It is the 
motion which would obtain for non-interacting massless particles governed 
by hydrodynamics alone; this itself presents a difficult calculation in hydro- 
dynamics but the solution can at least be represented as a functional of the 
bare macroscopic flow, Uo, and the particle positions: 

u u  = HU(W> [UO(r)l) (2.9) 
Now if the velocities satisfy a local equilibrium distribution then we 

further have: 

(2.10) 

It is generally the case that the momenta of the particles relax to their equi- 
librium distribution values much more rapidly than do their positions 
although work by Hinch' and Zwanzig' suggests we should have some 
reservations about this. Nevertheless if we consider the system over a time 
scale which is consistent with this assumption and neglect terms 0(0') 
we obtain from Eqs (2.7)-(2.9) 

i.e. 

O,P = Uo(r,)P + D - - - p 
vB[k:T a r j  

(2.11) 

(2.12) 

where we have introduced the diffusion tensor 

DS8 = k,TC;'' (2.13) 

Substituting Eq. (2.1 1) into the continuity Eq. (2.4) gives the required 
result : 

3 DIAGRAMMATIC HYDRODYNAMICS 

To calculate the diffusion tensor D, the convective motion Uu of the particles 
and other properties such as the viscosity of the suspension, requires a 
solution for the fluid flow around the particles. If we take the linear Stokes' 
equations to govern the fluid flow (thus neglecting fluid inertia in the micro 
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DYNAMICS OF COLLOIDAL DISPERSIONS I03 

hydrodynamics) the solution may be written as a linear response to the 
bare flow U o  and the forces on the particles f" 

U(r) = Uo(r) + dr'hN(rr'). Uo((r') + C gN(r, a ) .  fa. I a 

We do not include applied couples, assuming the particles to be couple-free. 
g, and hN both depend upon the positions of all the particles and 

H a  = hN(ra) 

hN(r, r') gives the flow perturbations, or scatterings due. to all the particles; 
where each particle individually scatters according to the total flow as 
perturbed by all the others. We may represent this diagrammatically as 

U f 

where U represents the total flow field U(r) and V the bare field or vacuum 
term, Uo( r). The two diagrams represent each particle creating a disturbance 
(which contributes to U )  due to the field U and the body force respectively 
infringing upon the particle. The scattering here is the isolated single particle 
scattering because interactive effects are included explicitly by the self- 
consistent form of the above equation. Simple iteration of the above equa- 
tion generates the "method of reflections"' for calculating the flows; in 
the iteration, diagrams giving direct self interactions must be counted zero. 

Even for the single particle scattering, however, we do not have a complete 
closed-form result. For a sphere, Stokes' drag calculation" gives exactly 

i.e. the flow due to the application of a steady force to the particle. 

flow impinges upon it, denoted by the diagram: 
Faxen's theorem" gives the net translation of a sphere when an arbitrary 
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104 R. C. BALL AND P. RICHMOND 

Notice that we have introduced here the notation that a line terminating 
on a particle represents a calculation of only the resulting motion of that 
particle, not the surrounding flow. 

We only know the resulting flow perturbation 

hl (r r I )  Uo(r')dr' 

as an expansion in the gradients of U o  at the particle centre ra 

h"'. Uo(ra) + h"): [VUoJra + h"): [VVIUo][ + etc. 

Of this, the first term is zero, the second was obtained by Einstein" for 
a sphere and is known for an ellipsoid" but few explicit calculations have 
been made of higher terms even for spheres. Consequently it is convenient 
to be able to represent separately the flow U(r) 3- and all its derivatives: 

VU(r) & 

etc. 

The particle scattering is a linear function of these values at the particle centre, 
rather than a functional of the flow field over the particle volume. 

In the diagrams we may now replace the thick lines by this infinite series 
of fields so that 

3/ becomes # # + etc. 

Of course we are forced to truncate this series in most cases, but it will be 
seen below that, if the number of scatterings or "reflections" is also trun- 
cated, it is entirely consistent to do this. 

Einsteins calculation can now be exhibited diagrammatically as 

Note that particles scatter only on response to flow gradients, i.e. 

3 zero. P 
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DYNAMICS OF COLLOIDAL DISPERSIONS 105 

Also even though higher ordered fields all cause a particle to generate a 
disturbance only two cause any net translation of the particle itself 

8 = 8 + 8; 8 = 8= all higher orders = zero. 

The order of a field is the order of its tensor form, represented by the mul-' 
tiplicity of its line; the dotted line for an applied force is counted of order 
one. 

It is very important to note that the way in which a flow propagates 
depends upon what caused it. The scattered flows (and gradients) decay as 
sums of inverse powers of distance and there is a very simple rule for cal- 
culating the leading term. Each line decays as r l - p - q  where p and q are the 
respective orders of the line in question and its predecessor. Thus the emerging 
line in the diagram: 

6 
decays as r 1 - 3 - 2  = r -4  and the most complex of Felderhof's diagrams (see 
next section) is counted as 

4 THE DIFFUSION COEFFICIENT 

The effect of interparticle interactions on the single particle diffusion coef- 
ficient D have been studied by a number of authors. Fe lde rh~f '~  has cal- 
culated this effect to first order in the particle volume fraction 4, by evaluating 
the equation of motion for the one particle distribution function p(rt) from 
the Smoluchowski Eq. (2.14) using a density expansion. The bare flow Uo(r,) 
and hence U, is zero. In terms of the diagrammatic scheme given previously, 
Felderhof's approximation to D is 

D I 2 = M  + + 
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I06 R. C. BALL A N D  P. RICHMOND 

and terms of order l/r8 and greater are neglected. The contracted Smolu- 
chowski equation is then reduced to a simple diffusion equation with coef- 
ficient D = Do(l + E.4). Felderhof obtains, for the case of hard sphere 
interparticle forces and the usual “stick” hydrodynamic boundary condi- 
tions, A = 1.56. 

Batchelor” has obtained D using a generalised Einstein relation : 

where p is the particle chemical potential and f(4) is the friction coefficient 
for sedimenting particles in a uniform force field, e.g. gravity. He obtained 
f(4) by integrating numerically the hydrodynamic equations of motion 
for a pair of hard sphere particles and obtained E. = 1.45. Felderhof discusses 
the shortcomings of other earlier calculations. The authors are not aware 
of any calculations of D in the higher volume fraction regime. 

Comparison of the results with experimental data based on light scattering 
techniquesI6 have been made but at present only qualitative agreement can 
be claimed. 

5 BULK STRESS AND VISCOSITY 

a)  Bulk stress 

The effective viscosity q of a suspension is given by: 

(6) = 2 d E )  

where the averages of stress u and strain rate E are volume averages. That 
these are indeed the observed macroscopic quantities is justified by con- 
sidering an experiment in which a large volume of suspension has exacrly 
linear flow imposed at its outer boundaries: 

U(r)  = E . r on boundary So 

The volume averaged strain rate is then given by: 

dV(Vr) .=E 
V 

Total 
Suspension 

Volume 
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DYNAMICS OF COLLOIDAL DISPERSIONS 107 

and the total work done on the system is 

d S . u . U =  d S . u . E . r =  d V V . ( a . E . r ) =  d V a : E =  V ( a ) : E  
IS, i I I 

where we have used the Stokes’ flow limit, V . G = 0. 
Macroscopic stress is due, at the microscopic level, to interparticle forces. 

As a result it is much easier to focus upon the divergence of the stress tensor, 
giving the net force on unit volume, as this is a quantity to which individual 
particles respond. 

The short range forces between fluid molecules are easy to handle if we 
assume equilibrium continuum mechanics for the fluid. This gives: 

uJ = QOefluid 

and a contribution to the bulk stress of: 

(1 -  nuid id = 2 ~ 0 ( 1  - 4)(e) f lu id  = 2V0(E)suspenrion 

For the forces associated with the particles it suffices to partially deine a 
stress field by 

V.0’ + FP = 0 

where F P  is the density of force exerted by the fluid on the particles and 
-crP.dS is the force exerted by particles on an element dS of the outer 
boundary of the suspension. This definition ensures that we may write 
V . G = 0, where the total stress u is given by c = up + uf ; thus u incorporates 
all the forces within the suspension. 

(5.1) 

Multiplying, e.g. (5.1) by r and integrating by parts we obtain 

d~uspensioncrP = dVrFP + dS . d r  I I Iso 

T I a r t i c i e  surface .I 
The forces FP can be written in terms of the surface stresses on the particles 
due to the fluid to give 

rof.dS, + LodS-rpr = 1 ( r -  r,)d.dS, 

- c ro f,* + L:s .upr 
a 

where r, is the centre of each particle and 

f: = -JuJ-dS, (5.2) 
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108 R. C. BALL A N D  P. R I C H M O N D  

is the force on the particle required to balance the surface stresses. Thus 
f: is given by the actual body force on the particle together with the force 
that would be required to produce the motion due to diffusion 

a 
ar, 

f: = f, - kT - In P({  rg}) 

This provides some justification for the inclusion of the latter, included ad hoc 
by Batchelor. ’ ’ 

However, the contribution of the diffusion forces to 

- c r ,  f,* 

gives exactly, on averaging over the full N-body distribution, the perfect 
gas term - N k T :  this point is rather obscured in Ref. 18. The true inter- 
particle forces then give: 

” c 

where fais is the force on particle a due to particle and dSfSlB is the force on 
dS due to particle /3. The extension to n-body forces is trivial and the surface 
terms are irrelevant as V -+ co. Now we return to the term: 

a J  

which may in fact be identified with the contribution due to continuum 
solid stress on the particles. 

Since for a given configuration of the particles the Stokes’ equations for 
the fluid flow are linear we may decompose the fluid stress into 

of = OH + OF 
where the first term is associated with the pure hydrodynamic shear flow 
U”. The remainder cF is associated with the flow UF due to net forces on the 
particles and diffusion. Batchelor’ ’ has proved a powerful identity which 
gives the bulk stress contribution of the latter flow in terms of the force-free 
flow. 

If we have two Stokes’ flows U 1  and U2 with associated stress fields 
0, and n2 then 

(5.3) 

dS. c2. U1 both giving dV(al :c2 - 3P1P2) by parts 

(5.4) 
s 
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DYNAMICS OF COLLOIDAL DISPERSIONS 109 

Flow 1 is taken to be the deviation part of the hydrodynamic flow round 
the particles. 

U1 = UH - E - r  

a, = aH - 29E,; 2E, = E + ET 

u2 = u'; a2 = OF 

(5.5) 

and flow 2 is the flow due to forces on (+diffusion of) the particles 

(5.6) 

The surface is that enclosing a large volume of suspension together with 
surfaces excluding all the particles. If exact linear shear flow is imposed at 
the outer boundary, U 2  and U, vanish there so only the particle surface 
terms contribute. 

On the surface of particle a centred at r,, 

u2 = UF(r,) + @ A (r  - r,) 

U, = UH(r,). +Qr A (r - rz) - E-r 

and 

(5.7) 

Neither rotational part contributes to the surface integrals since the particles 
are couple-free. 

Also 

IUF(r,) .(aH - 29,E,).dS = 0 

since in flow H the particles are force-free. Then if we write 

UH(r,) = E.r, + E:C, 

we obtain 

0 = c a2.dS, 
9 

= c E.(r, - r) .a , .dS,  + X E : C , *  aF.dS, 
9 a I 

Since this holds for arbitrary (traceless) E we can deduce 

(5.8) 

(5.9) 

where f,* is given by Eq. (5.2). 
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I10 R. C. BALL AND P. RlCHMOND 

The bulk stress is thus given by: 

1 1 1  
- - 1 C, . f: - - - 1 1 (r, - rlr)fils + isotropic terms 

" U  2 v u  8 
(5.1 1) 

where f u l a  is the force on LY due to and fX is the force on a in- 
cluding - k T(a/dr,)ln p ({ '@}). 

It should be noted that to include electro-viscous effects'* in the above 
formulation, each ion must be interpreted as a separate parti~1e.l~ Alter- 
natively the flow around each solid inclusion has to be treated as that of the 
appropriate inhomogeneous medium. 

b) 

Evaluating the terms in the stress formula (5.11) is in practice not at all easy. 
Various simplifying approximations have been explored, the chief being 
the limit of a dilute suspension. In this regime it is natural to seek an expan- 
sion of the viscosity on the volume fraction of particles 4: 

Viscosity a t  low volume fractions 

Contributions of order 9' are due to effects involving at most p particles, 
so that the first correction involves only the response of an isolated particle. 
In this case the only suspension correction to the stress is: 

!!! I( r - rl)a". dS1 
V 

and the flow is given by: 

(5.12) 

as calculated by Ein~tein. '~  He then proceeded to evaluate not the stress 
but the dissipation, but his results are equivalent to obtaining 5&/2 for the 
above force dipole (Eq. 5.12) and hence C1 = $4. We may denote the 
evaluation ofjust the hydrodynamic force dipole on a particle by 
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DYNAMICS OF COLLOIDAL DISPERSIONS I l l  

whereupon Einstein’s result is 

Q = 5ve 

where v is the particle volume. 
Over sixty years passed before Batchelor and Green” presented a direct 

calculation of the corresponding pure hydrodynamic contribution to the 
bulk stress to order $2. Their calculation is equivalent to the infinite series 
of diagrams. 

but they also had to take account of the corresponding modification to the 
shear rate in the fluid to obtain integrals. (Jeffrey and others,’l including 
one of the present authors, discuss this last issue at some length.) In the 
approach the hydrodynamic equations were integrated using a numerical 
procedure. 

For the thermal equilibrium distribution they obtained: 
C,” = 5.2 

where the superscript denotes the hydrocarbon contribution. For pure 
extension rates E > D0/a2 (where a is the particle radius and Do the dif- 
fusion constant) they found the resulting steady state correlation function 
from Eq. (2.14) with D = 0. This gave: 

C,” = 7.6 
For the case of low Peclet number, Eu2/Do 6 1, Ba t~he lo r ’~  has evaluated 
the direct Brownian contribution to C2 given by the stress 

kT a 
I/ u ar, 
- 1 C, .- In P (see equation 5.11) 

obtaining C = 1.0. 
To obtain the contribution due to inter-particle forces requires first the 

solution of (5.11) to at least first order in the flow term, for two particles. 
Neglecting hydrodynamic interactions this was carried through by Russel” 
for spheres with screened colomb forces. 

6 VISCOSITY AT HIGH VOLUME FRACTIONS 

Serious attempts to extend the formalism of the preceding sections to more 
concentrated dispersions have not been made but are likely to prove difficult. 
However other methods have been successful to some degree. Frankel and 
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112 R. C. BALL A N D  P. RICHMOND 

AcrivosZ3 have used a cell model to obtain the viscosity in the limit as the 
volume fraction 4 approaches its maximum value 4m. Assuming viscous 
dissipation arises primarily from flow in the fluid between the particles via 
lubrication their result for hard spheres is 

and c is a number which depends on the assumed cell geometry. A particularly 
fruitful approach can be developed using the notion of a mean field. Con- 
sider first the Einstein result for dilute suspension which may be expressed in 
differential form 

6‘1 = ‘1034 (6.2) 

Now consider increasing the volume fraction 4 of a concentrated suspension 
by an amount of 64. Within a mean field treatment one argues that the 
increase in viscosity dq should be given by 

This result was first proposed by A r r h e n i ~ s . ~ ~  However, as he recognised, 
this equation omits the correlations between spheres due to their finite 
size. One can argue in one of two ways: 

On increasing the volume fraction by an amount 64, the spheres that 
were already present suffer a crowding effect. This gives rise to an additional 
incremental increase in viscosity (k4 64) x 6‘1‘66. The “crowding” factor 
k will in general be a function of 4 and also for multimodel dispersions, a 
function of the polydispersity. We shall argue elsewherez6 that it varies 
only slowly with these parameters and set it equal to a constant in what 
follows. Thus the differential equation now reads: 

Alternatively one can argue that because particles are already present, the 
free volume available to the added particles is reduced by a factor 1 - k4. 
Thus we obtain 

Clearly both approaches give the same equation and a net viscosity 

9 = q0(l - k 4 p 2 ’  
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DYNAMICS OF COLLOIDAL DISPERSIONS I I3 

This result was first reported by Krieger.25 M ~ o n e y ~ ~  has published a 
derivation of 11 in which both of the above effects are included simultaneously. 
This leads to an exponential expression: 

However this approach appears to be inconsistent and double count the 
crowding effect. By exploring polydispersity both experimentally and theo- 
retically Farris” was able to show that the result of Krieger has a high 
degree of merit. Indeed, generalisation of the Krieger result to a bimodal 
distribution of particles with radii R ,  and R z  is exact in the limit R , / R 2  -+ 0 
and co which casts further doubt on Mooney’s result. 

More recently De GennesZ9 has published a calculation of the effect on 
the viscosity of aggregation of particles which occurs from hydrodynamic 
interactions. De Gennes argues that above a critical volume fraction an 
infinitely large cluster or aggregates could form which give rise to a cusp in 
the viscosity tl4 data. Such a phenomenon has not so far been reported but 
it is interesting to note that such a distribution may behave similarly to the 
multimodal distributions studied by Farris” for which case cusps are 
predicted and observed experimentally. 

In relating these results to experiment, it has been common practice to 
set l/k = 4m, the volume fraction at which the viscosity is infinite. Precise 
identification of this point is not easy for two reasons. Firstly, the measure- 
ment of viscosity in this region is not simple, spurious effects can and do 
occur which must be corrected for. Secondly, the calculation of volume 
fraction 4 is itself subject to uncertainties since the particles may swell, 
adsorb surface active agents or aggregate for a variety of reasons. In some 
respects the situation is analogous to that in critical phenomenon where one 
has to obtain an unknown exponent near to the vicinity of the critical point 
which is itself uncertain (at least to the degree of accuracy necessary). 

We would like to point out here another simple method for obtaining 
k which avoids this difficulty. Note that Eq. (6.6) must be valid over the 
whole range of volume fractions. Thus expanding in a power series in 
we obtain: 

rl 54 - = 1 + - + CZ+2 + 
I10 2 

where C2 = 8; + k) .  
Now an accurate value for C2 has been obtained by Batchelor and Green,2 

i.e. C2 = 5.2. Care must be taken not to add the Brownian contribution to 
C2 later calculated by Batchelor” since this has not been included in the 
mean field approach. This now yields 4m = 0.60 and which as expected lies 
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FIGURE 1 The points in the Figure are experimental values for shear viscosity us. volume 
fraction (relative to the locking volume fraction, 4m) for many colloids compiled by Chong, 
Christiansen and Baer.'3'' The dotted line represents the theoretical predictions of equation 
(6.6) derived in the text. 

below the value 0.64 for random close packing.jO Chong, Christiansen and 
Baer3' have compiled viscosity data from many sources. Their data which 
includes viscosities of different suspensions are reproduced in Figure 1 
and Eq. (6.6) using 4m = 0.6 is shown for comparison. The agreement is 
good. If now we add the direct Brownian contribution to the viscosity the 
theoretical values for q/qo in the region $/4m 5 0.7 are increased slightly 
thus improving further the agreement between theory and experiment. The 
Brownian contribution will be relatively negligible at higher volume 
fractions. 

I 
d 

'4 
.'I 

:a - + 

1 
' l o  4 

3 

_ _ _ -  - = ( I  - 4/4J3 

7 DISCUSSION 

The essential foundation for a comprehensive treatment of colloidal dy- 
namics is the Smoluchowski equation deduced in Section Two. Given the 
diffusion tensor D and the response H, from classical hydrodynamics the 
Smoluchowski equation yields complete equilibrium and diffusion controlled 
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dynamical information. The latter includes diffusion controlled aggregation 
kinetics as well as the quantities discussed here. To progress with under- 
standing of the diffusion coefficient more experimental data on well charac- 
terised dispersions are needed to compare with theoretical predictions, as 
well as to stimulate further work. Dilute systems may be studied using light 
scattering techniques;’ ’ radioactive tracers or neutron scattering may aid 
the study of concentrated systems. 

With regard to the viscosity within the linear regime the situation is 
quite different. Here mean field theories, whose parameters can be de- 
termined by ensuring they predict viscosities of dilute systems, can be 
used over the whole range of concentrations. Furthermore Farris2s has 
shown how such theories can be extended to cover polydisperse systems. 

There are many aspects of colloidal dynamics we have not discussed in 
this relatively brief review. Electroviscous effects,’ non-Newtonian behaviour 
such as may arise from particle deformation or aggregation, the consequences 
of anisotropic particles329 33 are all important aspects ofthe subject. Currently 
much experimental data is being obtained on systems that are better charac- 
terised than was the case a few years ago and it seems clear that theoretical 
techniques able to analyse less ideal, more complex systems are also being 
developed. This bodes well for a more fruitful interaction of theory and 
experiment and, in our opinion, theoreticians particularly should now take 
seriously the many challenges which have long been present in this field. 
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